
Entity-based
System Dynamics

modelling
Intro & Model Reuse

#ISDC 2024

Logistics
• Download the course material folder and unzip to a

convenient location
– Source: http://vensim.com/conference
– Choose a location you control, i.e. not locked by your operating

system

• Install Ventity 5 from http://Ventity.biz/download
– Licenses are unlocked through the end of August using

Bergen2024 as the license key
– If you have an existing 4.5 or later, that should be fine too

http://ventanasystems.com/conference
http://ventity.biz/download

Goals
Mechanics
• Environment
• Diagramming
• Equations
• Units
• Run control
• Run naming
• Entity initialization data
• Charts/tables
• Slider controls
• Entity picker
• Entity imports

Modeling Concepts
• Model-data separation
• Entities
• Attributes
• References
• Collections & aggregates
• Actions & triggers

Ventity concepts
• Entitytype/Entity – related structure sharing the same level of

detail, often representing a sector or agent; analogous to classes
and instances in OOP, or tables and rows in relational databases

• Attribute – a text tag that may contain a reference, or just
categorical data

• Reference – a pointer to another entity, often defined by an
attribute

• Collection/Subcollection – a set or subset of entities of a given
type, containing aggregates for variable values of members

• Action – a discrete event between time steps that changes system
structure or state, dispatched by a trigger

Diagram Toolbar

Diagram

Inspector

Model
Overview

Console & Error List

Entity Picker

Attribute/Reference Grid

File & Run Controls

Building & Running a Simple Model

• Project 0 – defining & running structure

• Project 1 – starting point for …

• Project 2 – adding a prerequisite network

• Project 3 – adding entity initialization data

…

• Project 21 – greater realism

Project 0 - Building

• Create a new model

• Draw some structure

• Write the key equation

• Working = Min(Work to
Do/Model.Time
Step,Staff*Productivity)

Project 0 – Running & Viewing

• Units

• Debugging

• Running

• Viewing

Project 1 – Starting Point

• Open the
Project 1
model in the
materials
package

• Just take a
look around

Project 2 - Reuse

• Create a new model

• Import the Task entity from Project 1

• Create a new Dependency entity

Project Architecture

Task
“Design”

Task
“Build”

Dependency
“Design->Build”

Project 2 – Add Prereqs

• In the Dependency entitytype, add 2
attributes and make them tasks

Project 2 – Referencing

• Open the inspector and
switch to the Reference
tab

• Expand the Prereq Task
reference, and drag
Fraction Complete onto
the diagram

Project 2 - Lookup
• Add a lookup

• Write an equation
Fraction of Work Doable = Fraction of Work Addressable
from Prereq Availability(Prereq Task.Fraction Complete)

Project 2 - Subcollection

• Add a new
(sub)Collection to
the Dependency

• Add an aggregate
Min(Fraction
Doable)

Project 2 – Referencing the Collection

• Return to the Task

• Drag the aggregate from the Dependency
collection inspector or diagram, onto the Task
diagram

Project 2 - Connecting

• Delete the existing “Fraction Doable”

• Replace it with
the referenced
aggregate

X

Project 2 – Completing the Reference

• Point the reference to the TaskID

• Run – expecting a few warnings

Project 3 – Populate the Data

• Create a new Builtin data source

• Add the Design & Build tasks

• Add the Design-Build dependency

Project 21 – Greater Realism
• Take a look around

– Collections
– References
– Model Map

• Modify the model
– Modifying data

• Split
• Add

– Data sets

THANKS!

Our mission: Make good decisions
by integrating all available
information in models that are
robust, transparent, and fast.

Dynamic Data Science

Structure

Data

Construction

Vetted

Structure

Vetted

Data

Confidence

Bounds

Priors

Collection

Testing

Subject Matter

Expertise

Reality

Checks

Policy

Experiments

Decisions

Cleaning

Revising

Method

Evaluation
Synthesis

Risk Insights

Dynamic

Insights

Monte Carlo

SimulationOptimization

VENTITY helps teams collaborate to build
complex models with model-data separation,

modularity, dynamic creation of structure,
sparse matrix relationships and intelligent

agents
… and it’s easy to use.

The approach lets you work on real problems,
with real data, at a natural level of detail

Multilevel problems are ubiquitous

• Competitive dynamics, with new firms or products introduced
midway through a simulation

• Payer/provider ecosystem, with patient migration and churn

• Doctor and patient behavior, with influence propagating on
social networks or spatial grids

• Project model, with task prerequisite matrix loaded from data

• Supply chain with arbitrary organization

• Climate integrated assessment with physical and economic
sectors delegated to different teams

Flexible aggregation options are needed

• Some problems require detail (can’t aggregate in principle)
• …But data availability may limit what is practical
• Too many dimensions make it hard to draw a stock-flow

diagram
• Sometimes detail is easier (hard to decide a priori what

aggregation is appropriate)
• Exploit Big Data and individual event statistics
• Show decision makers the granularity they live with (firms,

brands, segments, regions, …)

What do we need for productivity?
• Model-data separation, so model can be more generic

• Modularity:

– Component reuse

– Parallel development distributed among team members

– Standalone calibration of submodels

• Sparse representation (not all drugs need to serve all indications)

• Structure change (addition of new brands)

• Easy data import, preprocessing and comparison with model output

• Fast, robust simulation engine

• Calibration optimization

• Attractive diagrams, output and user controls

• Calendar time instead of abstract months

• Good run management & archiving

Ventity concepts
• Entitytype/Entity – related structure sharing the same level of

detail, like a class and instance in OOP, may represent a sector or
agent

• Attribute – a text tag that may contain a reference, or just
categorical data

• Reference – a pointer to another entity
• Collection/Subcollection – a set or subset of entities of a given type
• Action – a discrete event between time steps that changes system

structure or state

Ventity + GIS

• Ventity’s data model is a natural fit for
relational data, including shapefile attribute
tables

Shapefile attributes (.dbf)
Ventity Model

Entities

Initialize Simulate

Visualize

Points, polygons (.shp)

Which to choose?
Vensim if you need:
Interface running in browser client
MCMC
Command scripts
Matrix data
ODBC
RK integration

Ventity if you need:
Dynamic structure
Networks
Ad hoc data
GIS

If you don’t need one of the central features available on one platform, it’s largely a
matter of taste.

If you’re unsure, it’s easier to port Vensim to Ventity.

Vensim vs. Ventity - Representation

Feature Vensim Ventity

Equation Editing Menu Driven Predictive Typing

Diagramming Freeform Constrained, Style sheets

Source Control Improving with new diagram
stability and modularity

Inherently friendlier due to
modular entity structure

Data Many complex paths, ODBC A few simple paths, internal &
Excel

GIS Kludgy Builtin

Sparse Matrices & Networks Doable Builtin

Dynamic Structure No Yes

Detail Subscripts Entity Collections

Vensim vs. Ventity - Connections

Feature Vensim Ventity

Internal Interfaces Functional Prettier

API DLL, DDE Windows Service

Web Deployment Client (WebAssembly) or server
(DLL/Linux library)

Server (Windows Service)

Data Many paths, some complex A few simple paths

GIS Kludgy Builtin

Algorithms Optimization, MCMC, sensitivity,
stochastic optimization

Basic optimization, sensitivity

Automation Command scripts, DLL, DDE Multi-run configuration, Windows
Service

Ventity Advantages

• Reusability from modularity and model-data
separation

• Natural relational data model

• Speed & clarity for sparse networks

• Flexibility of representation

• Elegant development environment

Porting Vensim -> Ventity
• Ventity can import a Vensim model

– Subscripting is used to infer entitytypes (everything with similar
dimensions is grouped)

– Diagram must be reconstructed manually
– Most equations are compatible, though a little hand editing may

be needed
– Some exotic functions like FIND ZERO don’t have equivalents, or

require a different structure (ALLOC functions)

• There’s no automated return path to Vensim

	Default Section
	Slide 1: Entity-based System Dynamics modelling Intro & Model Reuse
	Slide 2: Logistics

	Introduction
	Slide 3: Goals
	Slide 4: Ventity concepts
	Slide 5

	Projects
	Slide 6: Building & Running a Simple Model
	Slide 7: Project 0 - Building
	Slide 8: Project 0 – Running & Viewing
	Slide 9: Project 1 – Starting Point
	Slide 10: Project 2 - Reuse
	Slide 11: Project Architecture
	Slide 12: Project 2 – Add Prereqs
	Slide 13: Project 2 – Referencing
	Slide 14: Project 2 - Lookup
	Slide 15: Project 2 - Subcollection
	Slide 16: Project 2 – Referencing the Collection
	Slide 17: Project 2 - Connecting
	Slide 18: Project 2 – Completing the Reference
	Slide 19: Project 3 – Populate the Data
	Slide 20: Project 21 – Greater Realism

	Background
	Slide 21: Thanks!
	Slide 22:
	Slide 23: Dynamic Data Science
	Slide 24: VENTITY helps teams collaborate to build complex models with model-data separation, modularity, dynamic creation of structure, sparse matrix relationships and intelligent agents … and it’s easy to use. The approach lets you work on real problem
	Slide 25: Multilevel problems are ubiquitous
	Slide 26: Flexible aggregation options are needed
	Slide 27: What do we need for productivity?
	Slide 28: Ventity concepts
	Slide 29: Ventity + GIS
	Slide 30: Which to choose?
	Slide 31: Vensim vs. Ventity - Representation
	Slide 32: Vensim vs. Ventity - Connections
	Slide 33: Ventity Advantages
	Slide 34: Porting Vensim -> Ventity

