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Advanced Calibration

e Weighting Payoff Elements
 Kalman Filtering
e Markov Chain Monte Carlo

e Sensitivity
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Less-Naive Calibration

e Weight (model-data) comparisons
Motivation

e To recognize varying scale and quality
— At different times (bigger data -> bigger error)

— Of different measurements (#elk > #wolves, or wolf error >
elk error)

 For computation of confidence bounds

— A properly-weighted likelihood has a known distribution and
is compatible with MCMC

 In many cases, we can estimate the weights

-
e @nsim®



Example — Lots of elk, any wolves?




Maximum Likelihood

e Choose the value of parameters that maximizes the
likelihood of observing the data given the model

e This is called a Maximum Likelihood Estimator (MLE)

e Suppose there is more than one observation

— Then the likelihood is the product of the individual
likelihoods for each data point

— Working with log likelihood is easier, because In() converts
the product to a sum

e Likelihood expresses the probability of getting the data
observed from your model, not the chance that the
model is right
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Likelihood Surface
Gaussian errors

model—data.?
e /
a 2

e Likelihood = e

oV2T
e This is the PDF of the Gaussian (Normal) distribution

e 0O represents the standard error associated with a data
point, corresponding with the weight assigned in
Vensim (or its inverse)
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Log-Likelihood
Gaussian errors

model—data.?
e /
a 2

e Likelihood = e

oV2T

e Log(Likelihood) =
— LN(o) - the bigger the g, the lower the likelihood, as it’s
spread thinner

— LN(v/2m) - this is a constant we can ignore

(model—data)z
= d / 2 - the weighted sum of squares, as in the

naive method, but for the factor /2
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Log Likelihood
Gaussian errors

e Likelihoods combine multiplicatively, i.e. Likelihood(A
and B) = Likelihood(A)*Likelihood(B)

e Log likelihoods therefore sum, LN(Likelihood(A and B))
= LN(Likelihood(A)) + LN(Likelihood(B))

model—-data

o ( )2 is (—)? so if we've guessed right about o,

we expect this to have magnitude ~1.

 For multiple data points, we expect the weighted sum of
squares to have magnitude of the number of data
points, and have a Chi-squared distribution.

e Therefore a properly-weighted payoff should have a
magnitude of N or N/2 (depending on the method
choice)

error
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Adding data shrinks the likelihood peak
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Error Distribution Assumptions

e N - Normal (simplest — used first for naive estimate)
— Payoff is the sum of (model-data)?*weight
— Weight = 1/(standard error of measurement)
— Proportional to 2*log likelihood
— You can't estimate the weight as a parameter
e G — Gaussian (often best choice)
— Sum of ((model-data)/StdDev)2/2 - LN(StdDev)

— This is a log likelihood (up to a constant multiplier) and can
be used to estimate the StdDev

e K- Kalman

— Same as Gaussian, but specified with Variance instead of
StdDev (primarily for use with the Kalman filter)
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Error Distribution Assumptions 2

e R —Robust
— Sum of ABS((model-data) /AbsErr) - LN(AbsErr)

— AbsErr scale parameter is a median absolute deviation rather
than standard deviation

— This is a log likelihood (up to a constant multiplier) and can
be used to estimate the AbsErr

— Not as efficient as Gaussian, but resistant to contaminated
data

e (Others — Robust/Huber, Poisson, etc.)

* For most purposes (not COVID!), use Normal, Gaussian,
Kalman or Robust

e Normal, Gaussian, Kalman differ only in interpretation of
the weight
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How do you determine ¢?

e Guess:
— “plus or minus x%"

— Standard deviation of the data (if stationary)
o Iterate:

— Run the model

— Look at the payoff or the residuals

— Adjust the error toward what you observe
e Estimate:

— Include the error or weight as an optimization control
parameter

— Requires extra terms in the payoff

— Likelihood e_(
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Scale Variation
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120
100

80 /\ \

1/

pred
8}
Lo ]

(.
o IS

probably
kbigger here

Y
N | v /\'m\f\\ f/ \'\/*-.\'
N S~ [ vﬂ\f \\ A
U AN v T
; " 40 680 80 100
Time (Time)
—— NoisyDataZ2o

VENTANA

13



Response to Scale Variation

e Log-transform the data

e Then o represents the fractional error, rather than the
absolute error

e This doesn’t work if the data includes 0, but there are
other quasi-log transformations that could be used

e It also doesn’t work for data with both negative and
positive values, for which an absolute error makes more
sense

-
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There’s an option for that ...
Policy Payoff Types

Payoff Element

Fayoff tupe

(@) Calibration () Palicy

Payoff details

Yariable Wolves Sel
Compare to Meazured Wolves Sel

StdDey E st Waolf rneasurement S0 frac h Sel

The weight zhould be pozitive for calibration. For policy optimizations uze a positive number
when more iz better and a negative number when less 1z better.

Transfarm Log ol “
Diztribution G aussian hd h
Timing Always

Ok Cancel
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Weighted Calibration Setup

ElkWolves - estimate - weighted

e Go to the Advanced tab

— Load comparison data (recommend NoisyDataShort.cin)

— Create a Payoff (.vpd) — different weighting
— Create a Control file (.voc) — adds error terms
e Hit the Optimize button

Simulation Control

2 Optimization

Payoff definition : |LogWeightedFit.\rpd h | B M
MNote : If running optimization with Kalman active, the payoff definition
defined here will be used.
Optimization Control : |Parameters+SD.\roc | Er M
] Payoff report
e
Check
-
this box
B> Simulate | D> SyntheSim | Hf Game | ¥ Sensitivity i Optimize 2 MCMC | |Ci Reality Check | |[B) Save Changes | | Cancel

&
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] |}

Payaff Definition.  Edit the filename to zave changes to a different cantral file

Pa y0ff Filerarne:

( .vpd ) Logi/eightedFit. vpd Browse Save Az Clear Settings

FPapoff Elements

Calibration: G aussian:Alwapz: Log i olveslMeasured Wolves/E st \Wiolf measurement 50 frac

Calibration: G auzzian:dlways: Log:E kiMeazured Ell/E =t Elk meazurement 50 frac

Fayoff type
(@) Calibration () Palicy

Paypoff details

W ariable Wiolves

Compare to Meazured Wolves

StdD ey EstWolf reasurement S0 frac h

The weight zhould be pozitive for calibration. For palicy optimizations use a positive number
when more iz better and a negative number when lezs 1z better.

Transfarm Log ol h
- Distributi ' ol
; istribution Gauszian h
| | Timing Always
Ok Cancel

VENTANA
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Optimization Control File (.voc)

Method & Settings
(no change)

Parameters & Bounds
(adds error terms)

VENTANA

Filename

Optimization Contral. Edit the filename to zave changes to a different contral file

Filenarne:  Farameters+500voc

Optimizer

[ ptimizer FPowell w | Stochastic

R andom type Default w | Pazz Limit
Cutput Lewvel On w | Frac Tol
Trace 0ff w | ABS Tal
Vector Points Scale ABS
bl ax |terations Sengitivity

b aw Simz I:I Fultiple Start

Choose aptimization parameters

0<=Felative initial waolves:=2

Browse Clear Settings

0.0003
1
1

] Don't overwite GET. %LS
[ ] Create CIM

PapaffYfal ~ | =
FRandom +  HRestart III

Optimization Control

A
0<=Elk fractional growth rate alpha<=1 Delete Selected
0<=E st "w'olf meazurement 50 fracs=1 &dd Conztant...

"
| |<=| =L J«L ]

todel value of constant

Ok,

Cancel
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Payoff Report

e Open the _runname_.rep file (a text editor is OK, but
Excel is better for viewing)

e Contents, for each data series:
— Contribution to payoff
— Source of data, # of points
— R™2
— Durbin Watson & Autocorrelation
— Theil statistics

o MSE = mean squared error, Um = unequal means, Us =
unequal variance, Uc = unequal covariance

— MAE, MAPE, MAEoM

-
e @nsim®
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Addressing Pitfalls — Kalman filtering

o State dependent noise
e Sample size

e Data i
utocorrelated erro
Error covariance
Measurement error
State estimation
ndogeneity

-
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The General Problem

o If the state of the model has drifted away from the state
of the world, the model’s incremental responses are
likely to be wrong

o Ordinary Least Squares on first differences essentially
assumes that the data is always right

e Ordinary simulations assume that the model is always
right

e Ideal: blend the apparent state in the data with the
model’s estimate of system state (which includes
information from prior data)

VENTANA veHSim® 21



Example: GPS mapping

e The observer has six states:
— Position X, Y, Z (lat, lon, altitude)
— Velocity dX, dY, dZ

e The device takes intermittent noisy measurements of
position only

e A simple approach to noise is to smooth successive
position estimates, but that introduces a lag — we can do
better with a model

e From physics: Position = Integral(Velocity)

e Strategy:
— Maintain estimates of position and velocity states
— Integrate velocity to predict position changes
— Update towards the measurements as they arrive

-
e @nsim®
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' State

Kalman Filtering

Update state
towards data

Time
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How far to update?

e Consider:
— How reliable is the data?
— How reliable is the model up to that point?

e Bayesian update (assuming Gaussian errors):

— New state = variance-weighted combination of model and
data = (Model/Var, 4o + Data/Varg..)/(1/Var oqet1/Varg.)

— Update variance similarly

o Complications
— Need to consider covariance (track Nyies”)
— Data might not measure states directly (need linear algebra)
— Non-Gaussian errors & outliers

-
e @nsim®
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Kalman Filtering

Good model,
State bad data

Model

Bad model,
_— good data

O Data

v

Time

25



NNNNNNN

Is the forecast in the
confidence bounds?

26



Why Confidence Bounds?
Perspectives

e Statistical
— Is an effect significantly different from zero?

e Practical

— What does uncertainty imply for policy?
— What data might narrow the bounds?

-
e @nsim®
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Several Paths to Confidence Bounds

e Old way
— Optimize to find the best fit to data
— Explore the payoff surface around the maximum

e New ways

— Bootstrapping (draw samples from the data)
— Markov Chain Monte Carlo (MCMC)

-
e @nsim®
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Parameter B

Multidimensional Likelihood

Bad
Bad

Bad
Bad

Parameter A
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Confidence Bounds & Likelihood

model—data.?
et /
2

e

Gaussian Likelihood =

oV2Tt

(model—data)z
Log Likelihood &% —lno — o /2 (leaving out invariant terms)

A weighted log-likelihood calibration payoff is a sum of
squares; 2*Log(likelihood/best likelihood) is distributed
Chi-squared with one degree of freedom

The expected value is the number of data points

Varying the payoff by the ChiSq critical value at 95%
yields a 95% confidence bound

— If your payoff uses the “"Normal” distribution setting, 3.84
— If you use “Gaussian” (preferred), 1.92 (=3.84/2)
— (Difference is due to presence or absence of the /2 factor)

-
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Standard Vensim payoff value sensitivity

o Test the payoff surface in the direction of each
parameter independently

A

Parameter B

. Parameter A
VENTANA vens.m® 31



Misses off-axis ellipsoids!
A

Parameter B

Parameter A

 Even harder if the likelihood surface is shaped like a banana,
or a snake, or a bag of 10-dimensional jellybeans...
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Unimodality, Smoothness

e If not, the confidence bounds can be misleading

Graph for payoff
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Time (Month)

payoff : Current
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Alternate Approach to Estimation
Markov Chain Monte Carlo (MCMC)

e Perform a random walk over the payoff surface, with
moves chosen according to point likelihoods

o Stationary distribution of the Markov process reflects
likelihood surface

 Problem: determining scale of proposed jumps

e Solution: Differential Evolution (run multiple Markov
chains and recombine from population to propose
jumps)

-
e @nsim®
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Parameter B

MCMC

Parameter A
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MCMC

Parameter B

Parameter A
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Procedure

e Payoff

— We want the input to be (reasonably close to) a log-
likelihood, so use the same kind of properly-weighted payoff
we already developed

o Control file
— We can use the same parameter set

— Change Optimizer to MCMC
— Possibly set other options

-
e @nsim®
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The Optimization Control File

:OPTIMIZER=MCMC
:MCLIMIT=5000 total number of runs

:MCBURNIN=4000 runs to discard as warmup
... etc. See Help system for details.

List of parameters to optimize:
O<=Reference wolf growth rate<=1

O<=Reference elk per wolf<=1
O<=Relative initial elk<=2

(same as before)

-
e @nsim®

38



MCMC - the Output

e Three parts:

— _runname_MCMC_sample.tab: A sample of points
representing the likelihood surface - the sample’s statistics
give you confidence bounds and represent the joint
distribution of parameters.

— _runname_MCMC_points.tab: A diagnostic file containing
more information on sample points, including those rejected

— _runname_MCMC_stats.tab: A diagnostic file containing
convergence metrics

]
e V@nsim®
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Using the Sample for Sensitivity Runs

 Plug the _MCMC_sample.tab file in as a Sensitivity
simulation

hortvdf:
@ ~ Sensitivity
Run . ) -
Sensitivity control file: | sensi from mecmcovsc h | =IBIr's
information £l | | L4 e
‘H' Sensitivity save list : | keyvars.lst | [ M e
Constant
Reset
changes @
o
Sensitivity setup b4
Data i
Filename
ul] zensi from momevsc | Er B @ o
[
Sensitivi
ensitivity i
4 Method Eile _ B e * memcWtdCal_ MCMC_sample.tab | de| @
Optimize 200
o3n 1234 [] Display warnings
S
MCMC Active parameters
v
< > Right click on a parameter to edit
The sketch is 'live’, double click any highlighted constants to add them to the list below.
B> Simulate | [
Enabled |Parameter Distribution |Min |Max |--—Arg:3--— |—--ﬂrg:4—-- |—-—Arg:5——— |--—Arg:l3--— | TP
E=t Wolf 1
driving noise ae
varnance
aEStEk
ubll noise
\'E’[?;I'DE @
Ezt Elk
maasuretn'lenISD o
=5t Elk measurement
< Previous Mext » oK Cancel DI/
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Using the Sample for Sensitivity Runs

—— emeWtdCal-sensi — 050
509 — 10092
— 759
Wolves
40

pred

0 20 40 60 a0 100

Time (Time)
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Bayesian System Dynamics

« Bayes Rule: P(A|B) = P(B|A)*P(A)/P(B)

Posterior
P(Params | Data)
= P(Data | Params) * P(Params) / P(Data)
Likelihood Prior Ignore

Implementation: combine calibration optimization or
MCMC with priors that capture the state of knowledge
about parameters.

-
e @nsim®
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Priors

e No priors = uniform priors
— This is essentially what we've been doing so far

— It's not always a good choice, *but* if you have lots of data,
it probably doesn’t matter.

 Non-informative or Maximum Entropy priors

— Contribute as little information as possible, i.e. assume
maximum ignorance a priori

— For a scale parameter like a time constant, this is
-LN(param) for positive parameters
e Informative priors

— If you — or experts or literature — have some opinion about a

parameter, you can use a subjective probability distribution
to characterize that

VENTANA veHSim® 43



Example

e Suppose we think from other information that wolves
live for about 7 years

The life spans of wild wolves vary dramatically. Although
the average lifespan is between 6 and 8 years, many
will die sooner, and some can reach 13. Wolves in
captivity can live up to 17 years. apr13, 2012

https://www.pbs.org » wnet » river-of-no-return-gray-wol

River of No Return | Gray Wolf Facts | Nature - PBS

e Wae could capture this in the model with a prior on the
wolf mortality rate

wn @nsim®
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Likelihood for Priors

If our belief is Normal (Gaussian):

param—prior.?2
| /2
oV2T

For an MCMC log likelihood, we only need the last term

o represents our belief about the plausible variation in
the prior

Likelihood =

G'D 9|E how long is a snake

QA E) Images [E News ¢ Shopping [ Videos i More

About 433,000,000 results (1,12 seconds)

“ Most snakes are fairly small animals, approximately 1 m (3.3 ft) in length.

-
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Other Choices

° Noninformative Scale _

parameter Texts in Statistical Science

— -LN(parameter) Da?: ﬁ;nséll?;lﬂs

SECOND EDITION

e Interval variables

— Noninformative: Haldane or
Jeffreys

— Informative: Beta

e Subjective

Andrew Gelman, John B. Carlin,

- DraW SOmethIng |n a |OO|(U|3 Hal S. Stern and Donald B. Rubin

é' CHAPMAN & HALL/CRC

VENTANA vensim® 46



Lifespan Prior

e In the first order model,
Lifespan = 1/Wolf Mortality Rate

— In the data generator, mortality rate = .08/year = 12.5 year lifespan, so
there will be some conflict between our prior and the “truth”
e We could use the Normal (Gaussian) distribution to express our prior,
something like:

— Wolf Mortality Prior
= -1/2*{(1/Wolf Mortality Rate — Wolf Lifespan Belief)
/ Wolf Mortality Confidence}”2
— “Wolf Mortality Confidence” is the standard deviation, in years, expressing
our belief about how widely lifespan might vary
e Normality probably isn’t the optimal choice, because it admits
negative values; instead use Lognormal:
— Wolf Mortality Prior
= -1/2*{LN(Wolf Mortality Rate*Wolf Lifespan Belief)
/ Wolf Mortality Confidence}”2
— “Wolf Mortality Confidence” is the standard deviation of our belief,
expressed as a fraction of the central value
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My Typical Playbook

Build/refine structure €~

 /
Load data

Create an interface view with model-data comparisons
Do some hand calibration to see what parameters are interesting

\/

Do a quick & dirty calibration
« Weight payoff with log transform and
wild guesses at fractional errors

Evaluate fit, work with model more, v
ponder what is really problematic or « Design policies
uncertain  Test policies deterministically

|

Develop a more carefully weighted payoff,
consider Kalman filtering, priors

Do MCMC to generate a confidence sample
Do sensitivity runs based on the sample v

™= . Do policy experiments with sensitivity
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