

Vensim® Software

Linking systems thinking to powerful dynamic models

Calibration with Vensim – Part 2

Tom Fiddaman 2022

Advanced Calibration

- Weighting Payoff Elements
- Kalman Filtering
- Markov Chain Monte Carlo
- Sensitivity

Less-Naïve Calibration

• Weight (model-data) comparisons

Motivation

- To recognize varying scale and quality
 - At different times (bigger data -> bigger error)
 - Of different measurements (#elk > #wolves, or wolf error > elk error)
- For computation of confidence bounds
 - A properly-weighted likelihood has a known distribution and is compatible with MCMC
- In many cases, we can estimate the weights

Example – Lots of elk, any wolves?

Maximum Likelihood

- Choose the value of parameters that maximizes the likelihood of observing the data given the model
- This is called a Maximum Likelihood Estimator (MLE)
- Suppose there is more than one observation
 - Then the likelihood is the product of the individual likelihoods for each data point
 - Working with log likelihood is easier, because ln() converts the product to a sum
- Likelihood expresses the probability of getting the data observed from your model, not the chance that the model is right

Likelihood Surface Gaussian errors

• Likelihood =
$$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(model-data)^2}{\sigma}^2/2}$$

- This is the PDF of the Gaussian (Normal) distribution
- σ represents the standard error associated with a data point, corresponding with the weight assigned in Vensim (or its inverse)

Log-Likelihood Gaussian errors

• Likelihood =
$$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(model-data)^2}{\sigma}^2/2}$$

- Log(Likelihood) =
 - $LN(\sigma)$ the bigger the σ , the lower the likelihood, as it's spread thinner
 - $LN(\sqrt{2\pi})$ this is a constant we can ignore

 $-\frac{\left(\frac{model-data}{\sigma}\right)^{2}}{2}$ - the weighted sum of squares, as in the naïve method, but for the factor /2

Log Likelihood Gaussian errors

- Likelihoods combine multiplicatively, i.e. Likelihood(A and B) = Likelihood(A)*Likelihood(B)
- Log likelihoods therefore sum, LN(Likelihood(A and B))
 = LN(Likelihood(A)) + LN(Likelihood(B))

• $\left(\frac{model-data}{\sigma}\right)^2$ is $\left(\frac{\text{error}}{\sigma}\right)^2$ so if we've guessed right about σ , we expect this to have magnitude ~1.

- For multiple data points, we expect the weighted sum of squares to have magnitude of the number of data points, and have a Chi-squared distribution.
- Therefore a properly-weighted payoff should have a magnitude of N or N/2 (depending on the method choice)

Adding data shrinks the likelihood peak

Copyright © 2021 Ventana Systems, Inc. Ventana is a registered trademark and a registered service mark of Ventana Systems, Inc.

Error Distribution Assumptions

- N Normal (simplest used first for naïve estimate)
 - Payoff is the sum of (model-data)^{2*}weight
 - Weight = 1/(standard error of measurement)
 - Proportional to 2*log likelihood
 - You can't estimate the weight as a parameter
- G Gaussian (often best choice)
 - Sum of ((model-data)/StdDev)²/2 LN(StdDev)
 - This is a log likelihood (up to a constant multiplier) and can be used to estimate the StdDev
- K Kalman

VENTANA

 Same as Gaussian, but specified with Variance instead of StdDev (primarily for use with the Kalman filter)

Error Distribution Assumptions 2

• R – Robust

- Sum of ABS((model-data) /AbsErr) LN(AbsErr)
- AbsErr scale parameter is a median absolute deviation rather than standard deviation
- This is a log likelihood (up to a constant multiplier) and can be used to estimate the AbsErr
- Not as efficient as Gaussian, but resistant to contaminated data
- (Others Robust/Huber, Poisson, etc.)
- For most purposes (not COVID!), use Normal, Gaussian, Kalman or Robust
- Normal, Gaussian, Kalman differ only in interpretation of the weight

How do you determine σ ?

• Guess:

- "plus or minus x%"
- Standard deviation of the data (if stationary)

• Iterate:

- Run the model
- Look at the payoff or the residuals
- Adjust the error toward what you observe

• Estimate:

- Include the error or weight as an optimization control parameter
- Requires extra terms in the payoff

- Likelihood
$$e^{-\frac{model-data}{\sigma}^2/2}$$

Scale Variation

13

Response to Scale Variation

- Log-transform the data
- Then σ represents the fractional error, rather than the absolute error
- This doesn't work if the data includes 0, but there are other quasi-log transformations that could be used
- It also doesn't work for data with both negative and positive values, for which an absolute error makes more sense

There's an option for that ... Policy Payoff Types

Payoff Element		×
Payoff type Calibration	O Policy	
Payoff details		
Variable	Wolves	Sel
Compare to	Measured Wolves	Sel
StdDev	Est Wolf measurement SD frac	Sel
The weight should be p when more is better and	ositive for calibration. For policy optimizations use a positive number d a negative number when less is better.	
Transform	Log v 🔶	
Distribution	Gaussian 🗸	
Timing	Always ~	
	OK Cancel	

Weighted Calibration Setup

ElkWolves - estimate - weighted

• Go to the Advanced tab

- Load comparison data (recommend NoisyDataShort.cin)
- Create a Payoff (.vpd) different weighting
- Create a Control file (.voc) adds error terms

• Hit the Optimize button

Simulation Control		\times
Optimization		
Run Payoff definition	LogWeightedFit.vpd	?
π	Note : If running optimization with Kalman active, the payoff definition defined here will be used.	
Constant changes Optimization Con	trol: Parameters+SD.voc 🖉 🗹	?
Payoff report		?
Data 😔 cet		
Sensitivity		
ICh	eck	
	a hav	
	S DOX	
WCMC V		
Simulate SyntheSim	🕽 Game 🗌 Sensitivity 🔏 Optimize 🗱 MCMC 🌾 Reality Check 🖺 Save Changes 🗙 Cancel	Ľ
R		

	DIOWSE Save As Clear Settings
Payoff Elements	
Calibration:Gaussian:Always	s:Log:Wolves Measured Wolves/Est Wolf measurement SD frac
Calibration:Gaussian:Always	s:Log:Elk Measured Elk/Est Elk measurement SD frac
Payoff Element	
- Pauoff tupe	
Calibration	
	0.1000
Payoff details	
Variable	Wolves
	Hannes (Males)
Compare to	Measured Wolves
Compare to StdDev	Est Wolf measurement SD frac
Compare to StdDev The weight sho when more is b	Est Wolf measurement SD frac uld be positive for calibration. For policy optimizations use a positive number etter and a negative number when less is better.
Compare to StdDev The weight sho when more is b Transform	Est Wolf measurement SD frac uld be positive for calibration. For policy optimizations use a positive number etter and a negative number when less is better.

Cancel

0K

Optimization Control File (.voc)

Method & Settings (no change)

Parameters & Bounds (adds error terms)

Optimization Cont	trol			
Filename Optimization Contr Filename: Para	rol. Edit the filena meters+SD.voc	me to save change	es to a different control file Browse Save As Clear Settings	
Optimizer				
Optimizer Random type	Powell ~ Default ~	Stochastic Pass Limit	No Seed 2 Tol Mult	
Output Level	On ~	Frac Tol		
Trace Vector Points	0ff ~ 25	ABS TO Scale ABS	1 Don't overwrite GE 1XLS 1 Create CIN	
Max Iterations Max Sims	1000	Sensitivity Multiple Start	Payoff Valu ~ = 1.92	
Choose optimization 0<=Relative initial 0<=Elk fractional 0<=Elk fractional 0<=Est Wolf measu 0<=Est Elk measu	on parameters wolves<=2 growth rate alpha- rate<=1 surement SD frac<= urement SD frac<=	<=1 (=1	 ▲ Delete Selected ▲ Add Constant ✓ 	
<= Model value of co	onstant			
		ОК	Cancel	

Payoff Report

- Open the <u>runname</u>.rep file (a text editor is OK, but Excel is better for viewing)
- Contents, for each data series:
 - Contribution to payoff
 - Source of data, # of points
 - R^2
 - Durbin Watson & Autocorrelation
 - Theil statistics
 - MSE = mean squared error, Um = unequal means, Us = unequal variance, Uc = unequal covariance
 - MAE, MAPE, MAEoM

Addressing Pitfalls – Kalman filtering

- State dependent noise
- Sample size
- Data quality
- Autocorrelated errors
- Error covariance
- Measurement error
- State estimation
- Endogeneity

The General Problem

- If the state of the model has drifted away from the state of the world, the model's incremental responses are likely to be wrong
- Ordinary Least Squares on first differences essentially assumes that the data is always right
- Ordinary simulations assume that the model is always right
- Ideal: blend the apparent state in the data with the model's estimate of system state (which includes information from prior data)

Example: GPS mapping

- The observer has six states:
 - Position X, Y, Z (lat, lon, altitude)
 - Velocity dX, dY, dZ
- The device takes intermittent noisy measurements of position only
- A simple approach to noise is to smooth successive position estimates, but that introduces a lag – we can do better with a model
- From physics: Position = Integral(Velocity)
- Strategy:

- Maintain estimates of position and velocity states
- Integrate velocity to predict position changes
- Update towards the measurements as they arrive

Kalman Filtering

How far to update?

• Consider:

- How reliable is the data?
- How reliable is the model up to that point?

• Bayesian update (assuming Gaussian errors):

- New state = variance-weighted combination of model and data = $(Model/Var_{model} + Data/Var_{data})/(1/Var_{model} + 1/Var_{data})$
- Update variance similarly

• Complications

Vensim[®]

- Need to consider covariance (track N_{states}^2)
- Data might not measure states directly (need linear algebra)
- Non-Gaussian errors & outliers

Kalman Filtering

Is the forecast in the confidence bounds?

Why Confidence Bounds? Perspectives

• Statistical

- Is an effect significantly different from zero?

• Practical

- What does uncertainty imply for policy?
- What data might narrow the bounds?

Several Paths to Confidence Bounds

• Old way

- Optimize to find the best fit to data
- Explore the payoff surface around the maximum

• New ways

- Bootstrapping (draw samples from the data)
- Markov Chain Monte Carlo (MCMC)

Multidimensional Likelihood

Confidence Bounds & Likelihood

• Gaussian Likelihood = $\frac{1}{\sigma\sqrt{2\pi}}e^{-(\frac{model-data}{\sigma})^2/2}$

- Log Likelihood $\approx -\ln \sigma \frac{(\frac{model-data}{\sigma})^2}{2}$ (leaving out invariant terms)
- A weighted log-likelihood calibration payoff is a sum of squares; 2*Log(likelihood/best likelihood) is distributed Chi-squared with one degree of freedom
- The expected value is the number of data points
- Varying the payoff by the ChiSq critical value at 95% yields a 95% confidence bound
 - If your payoff uses the "Normal" distribution setting, 3.84
 - If you use "Gaussian" (preferred), 1.92 (=3.84/2)
 - (Difference is due to presence or absence of the /2 factor)

Standard Vensim payoff value sensitivity

• Test the payoff surface in the direction of each parameter independently

VENTANA

Vensim[®] Copyright © 2021 Ventana Systems, Inc. Ventana is a registered trademark and a registered service mark of Ventana Systems, Inc.

Parameter A

• Even harder if the likelihood surface is shaped like a banana, or a snake, or a bag of 10-dimensional jellybeans...

VENTANA

Vensim[®] Copyright © 2021 Ventana Systems, Inc. Ventana is a registered trademark and a registered service mark of Ventana Systems, Inc.

Unimodality, Smoothness

• If not, the confidence bounds can be misleading

Alternate Approach to Estimation Markov Chain Monte Carlo (MCMC)

- Perform a random walk over the payoff surface, with moves chosen according to point likelihoods
- Stationary distribution of the Markov process reflects likelihood surface
- Problem: determining scale of proposed jumps
- Solution: Differential Evolution (run multiple Markov chains and recombine from population to propose jumps)

MCMC

VENTANA

36

Procedure

• Payoff

 We want the input to be (reasonably close to) a loglikelihood, so use the same kind of properly-weighted payoff we already developed

Control file

- We can use the same parameter set
- Change Optimizer to MCMC
- Possibly set other options

The Optimization Control File

- :OPTIMIZER=MCMC
- :MCLIMIT=5000 total number of runs
- :MCBURNIN=4000 runs to discard as warmup
- ... etc. See Help system for details.

List of parameters to optimize:

0<=Reference wolf growth rate<=1
0<=Reference elk per wolf<=1
0<=Relative initial elk<=2</pre>

(same as before)

...

MCMC – the Output

• Three parts:

- _runname_MCMC_sample.tab: A sample of points representing the likelihood surface - the sample's statistics give you confidence bounds and represent the joint distribution of parameters.
- _runname_MCMC_points.tab: A diagnostic file containing more information on sample points, including those rejected
- _runname_MCMC_stats.tab: A diagnostic file containing convergence metrics

Using the Sample for Sensitivity Runs

• Plug the _MCMC_sample.tab file in as a Sensitivity simulation Simulation Control

VENTANA Vensim[®]

	,	me: sensi itom	memervse									•
π	Sensitivity save list	: keyvars.lst										?
istant nges	🞯 Reset											
): J	Sensitivity setup											_
ata	Filename											
	sensi from mcr	nc.vsc								6		3
itivity	Settings											
4	Method	File 🔶			∽ File		mcmcV	VtdCal_MCM	C_sample.ta	b) aje
ap> imize	# Simulations	200			# Gri	d entries						
		1004				ſ	Dicola					
	Noise seed	1254				L		iy warnings				
СМС	Active paramete	1234 rs				L		iy warnings				
CMC	Active paramete Right click on a	rs parameter to edit						iy warnings				
	Active paramete Right click on a The sketch is 'liv	rs parameter to edit e', double click any	/ highlight	ed constants	to add them to	the list be	low.	iy warnings				
Simulate	Active paramete Right click on a The sketch is 'liv Enabled Param	rs parameter to edit e', double click any neter	/ highlight	ed constants	to add them to Distrib	the list be ution Mir	low.	Arg:3	Arg:4	·Arg:5	A	rg:6
Simulate	Active paramete Right click on a The sketch is 'liv Enabled Param	rs parameter to edit e', double click any neter	/ highlight	ed constants	to add them to Distrib	the list be ution Min	low.	Arg:3	Arg;4	·Arg:5	A	rg:6
Simulate	Active paramete Right click on a The sketch is 'liv Enabled Param	rs parameter to edit e', double click any neter	/ highlight	ed constants	to add them to	the list be ution Min	low. n Max	Arg:3	Arg:4	·Arg:5	A	rg:6
MC MC Simulate Nolf noise ince Elk ince Elk Elk SD	Active paramete Right click on a The sketch is 'liv Enabled Param	rs parameter to edit e', double click any neter	/ highlight	ed constants	to add them to Distrib	the list be ution Min	low. n Max	Arg:3	Arg:4	Arg:5	A	rg:6
Notf noise noise noise noise noise lik ment SD Veran	Active paramete Right click on a The sketch is 'liv Enabled Param	rs parameter to edit e', double click any neter	/ highlight	ed constants	to add them to Distrib	the list be	low.	Arg:3	Arg:4	Arg:5	A	rg:6

Copyright © 2021 Ventana Systems, Inc. Ventana is a registered trademark and a registered service mark of Ventana Systems, Inc.

Using the Sample for Sensitivity Runs

Bayesian System Dynamics

Bayes Rule: P(A|B) = P(B|A)*P(A)/P(B)

```
Posterior
P(Params | Data)
= P(Data | Params) * P(Params) / P(Data)
Likelihood Prior Ignore
```

Implementation: combine calibration optimization or MCMC with priors that capture the state of knowledge about parameters.

Priors

• No priors = uniform priors

- This is essentially what we've been doing so far
- It's not always a good choice, *but* if you have lots of data, it probably doesn't matter.

• Non-informative or Maximum Entropy priors

- Contribute as little information as possible, i.e. assume maximum ignorance a priori
- For a scale parameter like a time constant, this is
 -LN(param) for positive parameters

• Informative priors

VENTANA

 If you – or experts or literature – have some opinion about a parameter, you can use a subjective probability distribution to characterize that

Example

• Suppose we think from other information that wolves live for about 7 years

The life spans of wild wolves vary dramatically. Although the average lifespan is **between 6 and 8 years**, many will die sooner, and some can reach 13. Wolves in captivity can live up to 17 years. Apr 13, 2012

https://www.pbs.org > wnet > river-of-no-return-gray-wol... River of No Return | Gray Wolf Facts | Nature - PBS

• We could capture this in the model with a prior on the wolf mortality rate

Likelihood for Priors

• If our belief is Normal (Gaussian):

• Likelihood =
$$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(param-prior)^2}{\sigma}^2/2}$$

- For an MCMC log likelihood, we only need the last term
- σ represents our belief about the plausible variation in the prior

Other Choices

- Noninformative scale parameter
 - -LN(parameter)

Interval variables

- Noninformative: Haldane or Jeffreys
- Informative: Beta
- Subjective

VENTANA

- Draw something in a lookup

Lifespan Prior

- In the first order model, Lifespan = 1/Wolf Mortality Rate
 - In the data generator, mortality rate = .08/year = 12.5 year lifespan, so there will be some conflict between our prior and the "truth"
- We could use the Normal (Gaussian) distribution to express our prior, something like:
 - Wolf Mortality Prior
 - = -1/2*{(1/Wolf Mortality Rate Wolf Lifespan Belief)
 - / Wolf Mortality Confidence}^2
 - "Wolf Mortality Confidence" is the standard deviation, in years, expressing our belief about how widely lifespan might vary
- Normality probably isn't the optimal choice, because it admits negative values; instead use Lognormal:
 - Wolf Mortality Prior
 - = -1/2*{LN(Wolf Mortality Rate*Wolf Lifespan Belief)
 - / Wolf Mortality Confidence}^2
 - "Wolf Mortality Confidence" is the standard deviation of our belief, expressed as a fraction of the central value

My Typical Playbook

- Build/refine structure
- Load data
- Create an interface view with model-data comparisons
- Do some hand calibration to see what parameters are interesting
- Do a quick & dirty calibration
 - Weight payoff with log transform and wild guesses at fractional errors
- Evaluate fit, work with model more, ponder what is really problematic or uncertain
- Design policies
- Test policies deterministically

Do policy experiments with sensitivity

48

- Develop a more carefully weighted payoff, consider Kalman filtering, priors
- Do MCMC to generate a confidence sample
- Do sensitivity runs based on the sample